
MineGold.Bar Whitepaper

Jihyuk Im (zhugehyuk@gmail.com)

2025‑05‑05

A Protocol for Converting Real‑World Barcodes
into Digital Mining Nodes
Abstract
This document presents MineGoldbar, a deterministic system for trans‑
forming physical world barcodes into digital mining nodes through
cryptographic hash functions. The system implements a hierarchical
resource structure, mathematically defined mining algorithms, and
tokenized value exchange mechanisms that bridge physical world
interactions with digital economics. We detail the barcode‑to‑node
conversion protocol, mathematical models of resource hierarchy, and
token economy stabilization mechanisms through seasonal operations.
MineGoldbar is implemented on the Telegram Mini App platform to
enhance user accessibility while guaranteeing true ownership of digital
assets through blockchain technology integration.

Table of Contents
1. Introduction

1. Background of Barcode‑Based Mining Ecosystems
2. Goals and Vision of MineGoldbar
3. Document Structure

2. MineGoldbar Architecture
1. System Overview
1. Core Components
2. Hierarchical Design Principles

2. Barcode‑Node Conversion Mechanism
1. Hash Function Implementation
2. Deterministic Node Property Mapping

3. Resource System Hierarchy
1. Base Resource (Iron)
2. Intermediate Resource (Copper)
3. Advanced Resource (Silver)
4. Prime Resource (Gold)

4. Node Interactions

1

5. Seasonal Structure and State Transitions
3. Mining Mechanism

1. Barcode Scanning Protocol
2. Node Property Calculation Algorithms
3. Resource Generation Mechanisms
4. Energy SystemMathematical Model

4. Refining Process
1. Ore‑to‑Bar Conversion Functions
2. Refining Efficiency Calculations
3. Upgrade Paths and Cost Analysis

5. Token Economy
1. Technical Specifications of $GBAR Token
2. Issuance and Distribution Mechanisms
3. Token Value Stabilization Algorithms
4. Inter‑Season Token Conversion Protocol

6. In‑Game Interaction Protocols
1. Player Messaging and Transaction System
2. Guild Structure and Collaborative Mechanisms
3. Leaderboard and Competition Algorithms

7. Technical Implementation
1. TelegramMini App Architecture
2. Barcode Processing and Hashing Algorithms
3. Blockchain Integration Mechanisms
4. Security and Verification Protocols

8. Development Roadmap
1. Implementation Phases and Milestones
2. Feature Expansion Plans
3. Ecosystem Growth Strategy

9. Conclusion
• Appendix A: $GBAR Token Details
• Appendix B: Mathematical Formulas and Algorithms
• Appendix C: Glossary
• References

1. Introduction
1.1 Background of Barcode‑Based Mining Ecosystems
The boundary between digital and physical worlds continues to blur as
technologies evolve to bridge these domains. Barcodes represent one of
the most ubiquitous physical‑digital interfaces, with billions of unique
identifiers attached to products worldwide. These identifiers possess
untapped potential beyond their conventional role in supply chain and
retail applications.
The concept of converting physical identifiers into digital assets has
precedent in various domains. Quick Response (QR) codes have been
used for cryptocurrency payments, Near Field Communication (NFC)
tags for digital authentication, and Radio‑Frequency Identification
(RFID) for asset tracking. However, the systematic transformation

2

of existing product barcodes into deterministic digital mining nodes
represents a novel approach to physical‑digital integration.
MineGoldbar employs this approach by treating each Universal Prod‑
uct Code (UPC) or European Article Number (EAN) barcode as a unique
cryptographic seed that determines the properties of a corresponding
digital mining node. This creates a vast, distributed network of poten‑
tial mining opportunities embedded in the physical world, accessible
through a ubiquitous technological interface ‑ the smartphone camera.

1.2 Goals and Vision of MineGoldbar
MineGoldbar aims to create a balanced ecosystemwhere physical world
exploration, digital asset collection, and economic participation con‑
verge. The primary objectives of the system are:
1. To transform passive barcode scanning into an engaging resource‑
gathering mechanism

2. To establish a sustainable, mathematically sound economicmodel
that connects digital assets to real‑world value

3. To foster community collaboration through information sharing
and guild structures

4. To provide true ownership of digital assets through blockchain in‑
tegration

5. To maintain accessibility by implementing the system on the
widely‑adopted Telegram platform

TheMineGoldbar system is designed according to the principle of deter‑
ministic fairness: identical barcodes generate identical nodes regard‑
less of who scans them, creating incentives for community information
sharing while maintaining individual ownership and achievement.

1.3 Document Structure
This document is organized to provide a comprehensive understanding
of the MineGoldbar system, progressing from conceptual foundations
to technical implementations:
• Sections 2 and 3 detail the architectural foundations and core min‑
ing mechanisms
• Sections 4 and 5 cover the transformation of resources and token
economics
• Section 6 addresses player interactions and community features
• Section 7 explores technical implementation details
• Section 8 outlines the development roadmap
• The appendices provide supplementary mathematical formula‑
tions, token details, and terminology

Throughout this document, we employ precise mathematical notation
to describe algorithms and formulas, technical diagrams to illustrate
system architecture, and cross‑referencing to connect related concepts
across sections.

3

2. MineGoldbar Architecture
2.1 System Overview
2.1.1 Core Components The MineGoldbar system comprises five pri‑
mary components, interconnected through well‑defined interfaces:
1. Barcode Processing Subsystem: Manages barcode data capture,
validation, and transmission to server infrastructure

2. Node Generation Engine: Applies cryptographic transformations
to barcode data to create mining nodes with deterministic proper‑
ties

3. ResourceManagement System: Handles resource generation, stor‑
age, transformation, and exchange

4. Token Economics Module: Governs the creation, distribution, and
stabilization of the $GBAR token

5. Social Interaction Framework: Facilitates community engagement
through information sharing, guilds, and competition

Figure 2.1 illustrates the relationships between these components and
their data flows:
���������������������� ���������������������� ����������������������
� Barcode � � Node � � Resource �
� Processing �������� Generation �������� Management �
� Subsystem � � Engine � � System �
���������������������� ���������������������� ����������������������

�
�

���������������������� ����������������������
� Social �������� Token �
� Interaction � � Economics �
� Framework � � Module �
���������������������� ����������������������

Figure 2.1: Core Components andData Flow in theMineGoldbar System

2.1.2 Hierarchical Design Principles MineGoldbar employs a hierar‑
chical design across multiple dimensions:
1. Resource Hierarchy: Resources follow a strict progression from
Iron to Gold, with increasing rarity and value

2. Node Rarity Classification: Nodes are classified into six tiers from
Common to Unique, with progressively lower probabilities of dis‑
covery

3. Processing Tiers: Raw resources (Ore) require processing to create
refined resources (Bar), establishing a manufacturing hierarchy

4

4. Seasonal Structure: The system operates in distinct seasonal peri‑
ods, with state transitions and token conversions occurring at sea‑
son boundaries

This hierarchical approach facilitates system understanding, creates
clear progression paths for users, and establishes natural economic
stabilizers through scarcity mechanisms.

2.2 Barcode‑Node Conversion Mechanism
2.2.1 Hash Function Implementation The conversion of barcode data
to node properties employs a deterministic cryptographic transforma‑
tion as defined in Algorithm 2.1.
Algorithm 2.1: Barcode to Node Hash Transformation
function generate_node_hash(barcode_data, season_id):

// Normalize barcode data to standard format
normalized_data = normalize_barcode(barcode_data)

// Concatenate with season identifier to create seasonal variety
input_data = normalized_data + ":" + season_id

// Apply SHA-256 hash function
node_hash = SHA-256(input_data)

return node_hash

The resulting 256‑bit hash value provides sufficient entropy to derive
all node properties while maintaining deterministic behavior. The in‑
clusion of season_id in the hash input ensures that the same barcode
produces different nodes across seasons, maintaining exploration in‑
centives for returning players.

2.2.2 Deterministic Node Property Mapping A node N with hash h has
the following property set:
N(h) = (MP(h), CD(h), R(h), SA(h))
Where: ‑ MP(h): Mining Power function ‑ CD(h): Cooldown Time func‑
tion ‑ R(h): Rarity function ‑ SA(h): Special Abilities set function
Each function maps a specific subset of bits from the hash to the corre‑
sponding property:
Mining Power Calculation:
MP(h) = 1 + (parseInt(h.substring(0, 8), 16) % 100)

This produces mining power values in the range [1, 100] with a non‑
uniform distribution weighted toward lower values.
Cooldown Time Calculation:
CD(h) = 1 + (parseInt(h.substring(8, 16), 16) % 24)

5

This assigns cooldown times between 1 and 24 hours.
Rarity Determination:
rarity_value = parseInt(h.substring(16, 24), 16) % 1000000
R(h) = R_map(rarity_value)

function R_map(x):
if 0 � x < 500000: return 1 (Common)
if 500000 � x < 800000: return 2 (Advanced)
if 800000 � x < 950000: return 3 (Rare)
if 950000 � x < 990000: return 4 (Epic)
if 990000 � x < 999000: return 5 (Legendary)
if 999000 � x < 1000000: return 6 (Unique)

This results in the rarity distribution shown in Table 2.1:

Rarity Level Name Probability
1 Common 50.0%
2 Advanced 30.0%
3 Rare 15.0%
4 Epic 4.0%
5 Legendary 0.9%
6 Unique 0.1%

Table 2.1: Node Rarity Distribution
Special Abilities Determination:
special_bits = parseInt(h.substring(24, 32), 16)
SA(h) = decode_special_abilities(special_bits)

The decode_special_abilities functionmapsbit patterns to special abil‑
ities as defined in Table 2.2:

Bit Position Special Ability
0 Energy Consumption Reduction
1 Iron Mining Bonus
2 Copper Mining Bonus
3 Silver Mining Bonus
4 Gold Mining Bonus
5 Cooldown Time Reduction
6 Refining Efficiency Improvement
7 Bonus Resources on Activation

Table 2.2: Special Ability Encoding

6

2.3 Resource System Hierarchy
2.3.1 Base Resource (Iron) Iron represents the foundational resource
of the MineGoldbar ecosystem. As defined in Section 2.2.2, all nodes
regardless of rarity can produce Iron Ore.
The production rate of Iron Ore from node n over time period t is given
by:
G_iron(n, t) = MP(n) × t × E_factor
Where: ‑ MP(n): Mining power of node n as defined in Section 2.2.2 ‑ t:
Time elapsed in hours ‑ E_factor: Energy efficiency factor (default = 1.0)
Iron Ore is converted to Iron Bar through the refining process detailed
in Section 4.1.1, with the base conversion ratio defined as:
Iron_Bar = �Iron_Ore / CR_iron�
Where: ‑ CR_iron: Conversion rate (default = 10) ‑ �x�: Floor function
(rounds down to nearest integer)
Iron Bar serves as the primary in‑game currency, used for: ‑ Expanding
activation slots ‑ Upgrading nodes ‑ Paying marketplace fees ‑ Purchas‑
ing in‑game consumables ‑ Participating in guild activities

2.3.2 Intermediate Resource (Copper) Copper represents the second
tier in the resource hierarchy. Copper Ore can only be mined from
nodes with rarity level R(h) ≥ 2 as defined in Section 2.2.2.
The probability of obtaining Copper Ore in addition to Iron Ore from an
eligible node is determined by the formula:
P(Copper|R(n)) = base_copper_chance(R(n)) × copper_bonus(n)
Where: ‑ base_copper_chance(R(n)): Base probability dependent on rar‑
ity (see Table 2.3) ‑ copper_bonus(n): Bonusmultiplier from special abil‑
ities (default = 1.0)
Copper Bar conversion follows the same process as Iron, but with a
higher conversion rate:
Copper_Bar = �Copper_Ore / CR_copper�
Where: ‑ CR_copper: Conversion rate (default = 15)
Copper Bar is primarily used for: ‑ Advanced node upgrades ‑ Crafting
special items ‑ Accessing premium game features

2.3.3 Advanced Resource (Silver) Silver occupies the third tier of the
resource hierarchy. Silver Ore can only bemined fromnodes with rarity
level R(h) ≥ 3 as defined in Section 2.2.2.
The probability distribution for Silver Ore production follows patterns
similar to Copper but with more restrictive parameters:
P(Silver|R(n)) = base_silver_chance(R(n)) × silver_bonus(n)

7

Silver Bars require more refined processing:
Silver_Bar = �Silver_Ore / CR_silver�
Where: ‑ CR_silver: Conversion rate (default = 20)
Silver Bar is used for: ‑ Top‑tier node upgrades ‑ Exclusive features and
event participation ‑ Guild building enhancements

2.3.4 Prime Resource (Gold) Gold represents the apex of the resource
hierarchy. Gold Ore can only bemined from nodes with rarity level R(h)
≥ 4 as defined in Section 2.2.2.
The probability of obtaining Gold Ore follows:
P(Gold|R(n)) = base_gold_chance(R(n)) × gold_bonus(n)
Gold Bar conversion employs the highest conversion rate:
Gold_Bar = �Gold_Ore / CR_gold�
Where: ‑ CR_gold: Conversion rate (default = 25)
Gold Bar ($GBAR) is the only resource convertible to actual cryptocur‑
rency tokens at season end, as detailed in Section 5.
Table 2.3 summarizes the resource probabilities by node rarity:

Rarity Level Name Iron Copper Silver Gold
1 Common 1.0 0.0 0.0 0.0
2 Advanced 1.0 0.05 0.0 0.0
3 Rare 1.0 0.10 0.02 0.0
4 Epic 1.0 0.20 0.05 0.01
5 Legendary 1.0 0.30 0.10 0.03
6 Unique 1.0 0.40 0.20 0.05

Table 2.3: Resource Generation Probabilities by Node Rarity

2.4 Node Interactions
Nodes in the MineGoldbar system can interact with the resource man‑
agement system and with each other in several well‑defined ways:
1. Activation and Deactivation: Nodes can be placed in or removed
from activation slots, with amaximumof 5 slots for standard users
and 8 slots for VIP users as described in Section 3.4.3.

2. Mining Cycle: Each activated node proceeds through a determinis‑
tic mining cycle:
• Active Phase: Generates resources according to formulas in
Section 3.3
• Cooldown Phase: Temporary unavailability period after
resource generation

8

3. Node Collection Management: Users can organize nodes based on
their properties, optimizing for:
• Maximum resource output
• Specific resource targeting
• Cooldown rotation optimization

4. Guild‑based Node Sharing: As described in Section 6.2.2, nodes
can be temporarily sharedwithin guild structures, allowing for col‑
lective optimization of resource production.

The node interaction system is designed to encourage strategic decision‑
making about which nodes to activate, when to activate them, and how
to organize collections for optimal resource generation.

2.5 Seasonal Structure and State Transitions
The MineGoldbar system operates in discrete seasonal periods, each
with defined durations, themes, andmechanics. The seasonal structure
provides both economic stability and ongoing engagement through pe‑
riodic resets and new content.

2.5.1 SeasonDefinition andDuration Each season s is formally defined
as:
S = (start_time, end_time, theme, node_edition, max_token_supply)
Where: ‑ start_time: UTC timestamp for season commencement ‑
end_time: UTC timestamp for season conclusion ‑ theme: Thematic
identifier affecting visual elements ‑ node_edition: Identifier for season‑
specific node variants ‑ max_token_supply: Maximum $GBAR issuable
during the season
Standard seasons last approximately 3months, with the following struc‑
ture: ‑ Season 0 (Alpha): June 2025 end ‑ Season 1 (Beta): September
2025 end ‑ Season 2 (Official Launch): December 2025 end ‑ Subsequent
seasons: 3‑month duration

2.5.2 Inter‑Season State Transitions At season boundaries, the system
undergoes a structured state transition as defined in Algorithm 2.2:
Algorithm 2.2: Season Transition Process
function process_season_transition(current_season, next_season):

// Process $GBAR token conversions
convert_gold_bars_to_tokens(current_season)

// Handle resource carryover
iron_carryover = calculate_iron_carryover(current_season)
copper_carryover = calculate_copper_carryover(current_season)
silver_carryover = calculate_silver_carryover(current_season)

// Apply efficiency adjustments to previous season nodes

9

apply_efficiency_modifiers(current_season.node_edition)

// Initialize new season state
initialize_season_state(next_season, iron_carryover,

copper_carryover, silver_carryover)

// Begin new node edition
activate_node_edition(next_season.node_edition)

The carryover calculations establish continuity between seasons while
preventing resource accumulation that would destabilize the economy:
iron_carryover = current_iron_balance × 0.5 copper_carryover = cur‑
rent_copper_balance× 0.3 silver_carryover = current_silver_balance×
0.2
Gold Bar ($GBAR) is never carried over between seasons, as it is con‑
verted to blockchain tokens according to themechanismdetailed in Sec‑
tion 5.4.

2.5.3 Node Edition Transitions Each season introduces a new “edition”
of nodes. When barcode b is scanned in different seasons, it produces
nodes with different properties due to the inclusion of the season iden‑
tifier in the hash input as defined in Section 2.2.1.
Nodes from previous seasons remain in player inventories but have re‑
duced efficiency in subsequent seasons:
efficiency_modifier(node, current_season) = max(0.5, 1.0 ‑ 0.2 × (cur‑
rent_season ‑ node.season))
This efficiency modifier affects the resource generation formulas de‑
scribed in Section 3.3, encouraging ongoing exploration while preserv‑
ing some value for historical collections.

3. Mining Mechanism
3.1 Barcode Scanning Protocol
The barcode scanning protocol represents the primary interface be‑
tween the physical and digital domains in the MineGoldbar system. It
encompasses the acquisition, validation, and processing of barcode
data to initiate node discovery.

3.1.1 Supported Barcode Formats The system supports multiple bar‑
code symbologies to maximize accessibility:
1. UPC‑A: 12‑digit format commonly used in North America
2. UPC‑E: Compressed 6‑digit format
3. EAN‑13: 13‑digit format used internationally
4. EAN‑8: Compressed 8‑digit format
5. Code 39: Alphanumeric format

10

6. Code 128: High‑density alphanumeric format
Each format undergoes format‑specific validation before processing, in‑
cluding checksum verification where applicable.

3.1.2 Scanning Process Flow The scanning protocol follows a deter‑
ministic sequence of operations as illustrated in Figure 3.1:
�������������� ������������� ����������������� ���������������
� Image � � Barcode � � Validation & � � Server-side �
� Acquisition������� Detection ������� Normalization ������� Processing �
�������������� ������������� ����������������� ���������������

Figure 3.1: Barcode Scanning Process Flow
1. Image Acquisition: Captured via device camera through the Tele‑
gramMini App interface

2. Barcode Detection: Image processing algorithms identify barcode
patterns in the image frame

3. Validation & Normalization:
• Format‑specific validation (e.g., checksum verification)
• Conversion to canonical representation
• Duplicate detection based on user history

4. Server‑side Processing:
• Rate limiting enforcement
• Energy cost deduction
• Node generation algorithm application

3.1.3 Scan Rate Limiting To maintain economic balance and prevent
automated exploitation, scanning is limited by two mechanisms:
1. Energy System: As detailed in Section 3.4, each scan consumes one
energy unit from a limited pool

2. Duplicate Prevention: Users are prevented from rescanning the
same barcode within a defined time window:
• T_rescan = max(24 hours, current_season_duration × 0.1)

These limitations balance accessibility with economic stability, prevent‑
ing exploitation while maintaining engagement opportunities.

3.2 Node Property Calculation Algorithms
Building upon the hash‑based property mapping described in Section
2.2.2, this section provides detailed algorithms for determining each
node property.

11

3.2.1 Mining Power Algorithm Mining Power determines the base re‑
source generation rate of a node and is calculated using Algorithm 3.1:
Algorithm 3.1: Mining Power Calculation
function calculate_mining_power(node_hash):

// Extract first 8 bytes of hash for mining power determination
mp_bytes = node_hash.substring(0, 8)

// Convert to integer and apply non-linear transformation
raw_value = parseInt(mp_bytes, 16) % 1000

// Apply logarithmic scaling to create power-law distribution
// with more common low values and rare high values
scaled_value = Math.ceil(100 * Math.log(1 + raw_value/100) / Math.log(11))

// Ensure minimum mining power of 1
return Math.max(1, scaled_value)

This algorithm produces a distribution of mining power that follows ap‑
proximately a power law, with many nodes having low to medium min‑
ing power (1‑30) and increasingly rare high‑power nodes (31‑100).

3.2.2 Cooldown Time Algorithm Cooldown Time determines how long
a node must wait after completing its mining cycle before it can be acti‑
vated again. Algorithm 3.2 calculates this property:
Algorithm 3.2: Cooldown Time Calculation
function calculate_cooldown_time(node_hash, node_rarity):

// Extract bytes 8-16 of hash for cooldown determination
cd_bytes = node_hash.substring(8, 16)

// Base cooldown calculation
base_cooldown = 1 + (parseInt(cd_bytes, 16) % 24)

// Apply rarity-based reduction
// Higher rarity nodes have shorter cooldown times
rarity_multiplier = 1.0 - ((node_rarity - 1) * 0.05)

return Math.max(1, Math.floor(base_cooldown * rarity_multiplier))

This creates a range of cooldown times from 1 to 24 hours, with higher
rarity nodes generally having shorter cooldown times, increasing their
relative value.

3.2.3 Special Abilities Algorithm Special abilities provide unique mod‑
ifications to node behavior and are determined by Algorithm 3.3:
Algorithm 3.3: Special Abilities Determination
function determine_special_abilities(node_hash, node_rarity):

// Extract bytes 24-32 of hash for special abilities

12

ability_bytes = node_hash.substring(24, 32)
ability_value = parseInt(ability_bytes, 16)

// Initialize empty ability set
abilities = []

// Determine number of abilities based on rarity
max_abilities = Math.min(3, Math.floor((node_rarity + 1) / 2))

// Potential abilities array
potential_abilities = [

"ENERGY_REDUCTION",
"IRON_BONUS",
"COPPER_BONUS",
"SILVER_BONUS",
"GOLD_BONUS",
"COOLDOWN_REDUCTION",
"REFINING_BONUS",
"ACTIVATION_BONUS"

]

// Select abilities deterministically
for (i = 0; i < max_abilities; i++) {

ability_index = (ability_value >> (i * 4)) & 0xF % potential_abilities.length
abilities.push(potential_abilities[ability_index])

}

return abilities

Each special ability provides a specific bonus to the node’s operations,
with magnitudes typically ranging from 5% to 25% depending on the
ability type.

3.3 Resource Generation Mechanisms
The resource generationprocess determineshownodes produce the var‑
ious resource types over time.

3.3.1 Base Resource Generation Model For any activated node n, the
generation rate of resource type r over time period t is given by the gen‑
eral formula:
G(n, r, t) = MP(n) × t × P(r|R(n)) × BM(n, r) × EM(s)
Where: ‑ MP(n): Mining power of node n ‑ t: Time elapsed in hours
‑ P(r|R(n)): Probability of resource r based on node rarity R(n) ‑ BM(n,
r): Bonus multiplier for resource r from node special abilities ‑ EM(s):
Efficiency modifier based on season s as defined in Section 2.5.3
For Iron, the base resource, P(Iron|R(n)) = 1.0 for all nodes regardless of
rarity, ensuring consistent base resource generation.

13

3.3.2 Probabilistic Resource Generation Higher‑tier resources (Cop‑
per, Silver, Gold) are generated probabilistically, with each mining
cycle having a chance to produce quantities of these resources alongside
the guaranteed Iron production.
The algorithm for determining these additional resources is detailed in
Algorithm 3.4:
Algorithm 3.4: High‑Tier Resource Generation
function generate_high_tier_resources(node, elapsed_time):

// Calculate base iron generation
iron_amount = node.mining_power * elapsed_time

// Initialize other resources
copper_amount = 0
silver_amount = 0
gold_amount = 0

// Check for copper generation
if (node.rarity >= 2 && Math.random() < P_copper(node.rarity)) {

copper_amount = Math.floor(iron_amount * copper_ratio(node.rarity) * node.copper_bonus)
}

// Check for silver generation
if (node.rarity >= 3 && Math.random() < P_silver(node.rarity)) {

silver_amount = Math.floor(iron_amount * silver_ratio(node.rarity) * node.silver_bonus)
}

// Check for gold generation
if (node.rarity >= 4 && Math.random() < P_gold(node.rarity)) {

gold_amount = Math.floor(iron_amount * gold_ratio(node.rarity) * node.gold_bonus)
}

return {
iron: iron_amount,
copper: copper_amount,
silver: silver_amount,
gold: gold_amount

}

The various probability and ratio functions referenced in this algorithm
are defined according to the values in Table 2.3 (see Section 2.3.4).

3.4 Energy SystemMathematical Model
The energy system governs the rate at which players can discover new
nodes, providing both a balancing mechanism and a monetization op‑
portunity.

14

3.4.1 Energy Capacity and Regeneration The energy system is defined
by the following parameters:
• E_max(u): Maximum energy capacity for user u
• E_current(u, t): Current energy of user u at time t
• T_regen(u): Time in hours to regenerate one energy unit for user u

These parameters vary based on user type:

User Type E_max T_regen (hours)
Standard 3 8
VIP 3 6

Table 3.1: Energy System Parameters by User Type
The energy regeneration function is:
E_current(u, t) =min(E_max(u), E_last(u) + floor((t ‑ t_last) / T_regen(u)))
Where: ‑ E_last(u): Energy level when last updated ‑ t_last: Timestamp
when energy was last updated ‑ floor(x): Function returning largest in‑
teger not greater than x

3.4.2 Energy Consumption Model Energy is consumed by specific ac‑
tions, primarily barcode scanning. The consumption model is:
E_new(u) = E_current(u) ‑ C_action
Where C_action is the energy cost of the action (scanning = 1 by default).

3.4.3 Activation Slot System Complementary to the energy system is
the activation slot system, which limits how many nodes a player can
have generating resources simultaneously:
• Standard users: 5 activation slots
• VIP users: 8 activation slots

The activation system enables strategic decisions about which nodes to
keep active at any given time, balancingmining power, cooldown times,
and resource targeting.
Additional slots can be purchased using Iron Bars according to the cost
function:
cost(slot_index) = 100 × 2^(slot_index ‑ 5) for slot_index > 5

4. Refining Process
4.1 Ore‑to‑Bar Conversion Functions
The refining process transforms rawOre resources into their refinedBar
forms, which are used as the primary currencies in the MineGoldbar
economy.

15

4.1.1 Basic Conversion Function The general conversion function for
transforming Ore to Bar is defined as:
Bar_amount = floor(Ore_amount / CR(r, l))
Where: ‑ floor(x): Function returning largest integer not greater than x
‑ CR(r, l): Conversion rate for resource type r at refinery level l
The base conversion rates for each resource type are:

Resource Base Conversion Rate (CR(r, 1))
Iron 10
Copper 15
Silver 20
Gold 25

Table 4.1: Base Resource Conversion Rates

4.1.2 Refinery Efficiency Function The refinery efficiency improves as
players upgrade their refinery, according to the function:
CR(r, l) = max(CR_min(r), CR(r, 1) ‑ E(l))
Where: ‑ CR_min(r): Minimum conversion rate for resource r ‑ E(l): Ef‑
ficiency improvement at level l
The efficiency improvement function is:
E(l) = floor(log(l) × 0.1 × CR(r, 1))
This creates diminishing returns on refinery upgradeswhile still reward‑
ing long‑term investment.
The minimum conversion rates prevent efficiency from becoming too
high:

Resource CR_min(r)
Iron 8
Copper 12
Silver 16
Gold 20

Table 4.2: Minimum Resource Conversion Rates

4.2 Refining Efficiency Calculations
4.2.1 Refining Time Model In addition to the conversion rate, refining
time is an important factor in the refining process:
T_refine(amount, r, l) = amount × T_base(r) / RT(l)

16

Where: ‑ T_base(r): Base refining time per unit of resource r ‑ RT(l): Re‑
fining time multiplier at level l
The base refining times per resource unit are:

Resource T_base(r) (seconds)
Iron 60
Copper 120
Silver 180
Gold 300

Table 4.3: Base Refining Times per Resource Unit
The refining time multiplier is:
RT(l) = 1 + log(l) × 0.2
This ensures that higher‑level refineries process resourcesmore quickly
as well as more efficiently.

4.2.2 Batch Processing Optimization The refining system supports
batch processing to optimize user experience. When processing a
batch of resources, the following optimization applies:
T_batch(amount, r, l) = T_refine(amount, r, l) × (0.9 + 0.1 × e^(‑
amount/100))
This provides a small efficiency bonus for larger batches, encouraging
periodic collection and refining rather than continuous small‑batchpro‑
cessing.

4.3 Upgrade Paths and Cost Analysis
4.3.1 Refinery Upgrade Cost Function The cost to upgrade the refinery
from level l to level l+1 follows the function:
C_upgrade(l) = base_cost × (1.02)^(l‑1)
Where base_cost = 100 Iron Bars.
Additional costs apply at specific milestone levels:

Level Additional Cost
5 +5 Gold Bar
10 +10 Gold Bar
100 +100 Gold Bar

Table 4.4: Additional Costs at Milestone Levels

17

4.3.2 Return on Investment Analysis To determine the efficiency of re‑
finery upgrades, we can calculate the ROI for each level:
ROI(l) = (CR(r, l‑1) ‑ CR(r, l)) × avg_monthly_ore / C_upgrade(l)
Where avg_monthly_ore is the average amount of ore processed per
month.
For the typical user processing approximately 10,000 Iron Ore per
month, the optimal upgrade path involves reaching Level 10 as quickly
as possible, then gradually upgrading to Level 50 over the course of a
season, balancing upgrade costs against improved efficiency.

4.3.3 Gold Bar Refund Policy A critical aspect of the refinery upgrade
system is the Gold Bar refund policy:
All Gold Bars used for game upgrades are refunded at season end in the
form of $GBAR tokens.
This policy encourages players to invest in long‑term improvements of
their in‑game infrastructure while preserving the real‑world value of
their investments. The refund is processed according to the algorithm
detailed in Section 5.4.1.

5. Token Economy
5.1 Technical Specifications of $GBAR Token
The $GBAR token serves as the bridge between the MineGoldbar
in‑game economy and external blockchain networks, enabling true
ownership and value transfer.

5.1.1 Token Standard and Platform The $GBAR token is implemented
as a standard token on The Open Network (TON) blockchain with the
following specifications:
• Token Type: TON Jetton (equivalent to ERC‑20 on Ethereum)
• Decimals: 9 (allowing for up to 1 nanogram precision)
• Smart Contract: Upgradeable proxy pattern for future enhance‑
ments
• Metadata: Includes name, symbol, logo, and documentation links

5.1.2 Token Utility Functions The $GBAR token provides the following
utility within the ecosystem:
1. Value Storage: Represents accumulated Gold Bar resources across
seasons

2. Governance: Planned voting rights for ecosystemdecisions (future
feature)

3. Node Persistence: Required for converting nodes toNFTs at season
end

4. Exclusive Features: Access to certain premium functionality

18

5. External Value: Tradable on compatible exchanges

5.1.3 Technical Integration The token integration architecture follows
a secure bridge pattern:
����������������� ����������������� �����������������
� Game Server � � Bridge Server � � Blockchain �
� Database �������� & Cold Wallet �������� Network �
����������������� ����������������� �����������������

Figure 5.1: Token Bridge Architecture
This architecture ensures: ‑ Secure separation between game state and
blockchain transactions ‑ Batched processing for gas efficiency ‑ Cold
storage security for undistributed tokens ‑ Auditability of all token is‑
suance and distribution

5.2 Issuance and Distribution Mechanisms
5.2.1 Total Supply and Allocation The total supply of $GBAR is fixed at
1,111,111,111 tokens, with the following allocation:

Allocation
Category

Amount
(GBAR) PercentageUnlock Schedule

Initial Circulation 311,111,111 % At launch
ﾤ Season 0 (Alpha) 100,000,000 %
ﾤ Operation &
Airdrop

100,000,000 % Various

ﾤ Presale as Node
NFT

111,111,111 % Lockup 6 mo + slow
vesting

Season 1 (Beta) 200,000,000 % End of Season 0
Season 2 (Official) 300,000,000 % End of Season 1
Future Seasons 300,000,000 % Jan 1, 2026 onwards

Table 5.1: $GBAR Token Allocation

5.2.2 Season‑based Issuance Formula The seasonal token distribution
follows the mathematical model:
S(t) = S� + ∫(0,t) E(τ)dτ ‑ ∫(0,t) B(τ)dτ
Where: ‑ S(t): Circulating supply at time t ‑ S�: Initial supply
(300,000,000 GBAR) ‑ E(τ): Emission rate at time τ ‑ B(τ): Burn rate
at time τ
The emission rate E(τ) is defined by the seasonal cap:
E_max(s) = { 100,000,000, s = 0 200,000,000, s = 1 300,000,000, s = 2
300,000,000, s ≥ 3 }
The actual emission in each season is determined by the total Gold Bar
production, subject to the constraint:

19

0 ≤ E_actual(s) ≤ E_max(s)

5.2.3 Distribution Based on Player Achievement Within each season,
tokens are distributed proportionally to player achievements according
to the formula:
token_reward(p, s) = E_actual(s) × (player_gold(p, s) / total_gold(s))
Where: ‑ player_gold(p, s): Gold Bar accumulated by player p in season
s ‑ total_gold(s): Total Gold Bar accumulated by all players in season s
This ensures fair distribution based on individual contribution to the
ecosystem.

5.3 Token Value Stabilization Algorithms
5.3.1 Scarcity Mechanisms The $GBAR token implements several
scarcity mechanisms to maintain value stability:
1. Fixed Maximum Supply: The total token supply is capped at
1,111,111,111 GBAR

2. Seasonal Emission Caps: Each season has a maximum emission
limit

3. Difficulty Adjustment:
difficulty_factor(s) = difficulty_factor(s-1) ×

min(2, max(0.5, target_emission / actual_emission(s-1)))

This algorithm adjusts the difficulty of obtaining Gold Ore based
on previous season emission, targeting a steady emission rate.

4. Burn Mechanisms: Multiple token burn functions remove $GBAR
from circulation:
• NFT conversion costs
• Premium feature access
• Marketplace fees

5.3.2 Anti‑inflation Measures In addition to scarcity mechanisms, the
system implements specific anti‑inflation measures:
1. Gold Ore Rarity: The probability distribution for Gold Ore discov‑
ery is heavily weighted toward zero, with only high‑rarity nodes
having meaningful chances to discover Gold Ore

2. High Conversion Rates: The default 25:1 conversion rate for Gold
Ore to Gold Bar ensures that significant effort is required to gener‑
ate each token

3. Seasonal Reset: The seasonal resetmechanism prevents unlimited
accumulation of resources within a single economic cycle

20

4. Dynamic Difficulty: If Gold Bar production exceeds targets, the
system can reduce Gold Ore generation probabilities for the sub‑
sequent season

5.3.3 Oracle‑based Price Stability For future implementation, an
oracle‑based price stability mechanism is planned:
difficulty_adjustment = f(token_price, target_price)
Where: ‑ token_price: Currentmarket price of $GBAR ‑ target_price: De‑
sired stable price range ‑ f(): Adjustment function that increases diffi‑
culty when price is below target and decreases it when price is above
target
This mechanism will help maintain long‑term price stability as the
ecosystemmatures.

5.4 Inter‑Season Token Conversion Protocol
5.4.1 End‑of‑Season Conversion Process At the conclusion of each sea‑
son, in‑game Gold Bar is converted to $GBAR tokens according to Algo‑
rithm 5.1:
Algorithm 5.1: Season‑End Token Conversion
function process_end_of_season_conversion(season_id):

// Calculate total Gold Bar produced this season
total_gold_bar = sum(player.gold_bar for player in all_players)

// Calculate the conversion ratio based on season cap
if (total_gold_bar <= season_max_emission[season_id]) {

conversion_ratio = 1.0 // 1:1 conversion
} else {

conversion_ratio = season_max_emission[season_id] / total_gold_bar
}

// Process each player
for (player in all_players) {

// Calculate base token reward
token_amount = player.gold_bar * conversion_ratio

// Add refund for Gold Bar spent on upgrades
token_amount += player.gold_bar_spent_on_upgrades

// Issue tokens to player's wallet
issue_tokens(player.wallet_address, token_amount)

// Reset player's Gold Bar balance for new season
player.gold_bar = 0
player.gold_bar_spent_on_upgrades = 0

}

21

// Update difficulty for next season
update_difficulty_factor(season_id, total_gold_bar)

}

This algorithm ensures: 1. Fair distribution proportional to achieve‑
ment 2. Adherence to seasonal emission caps 3. Full refund of Gold
Bar spent on game upgrades 4. Automatic difficulty adjustment for the
next season

5.4.2 Unclaimed Token Management In cases where players have not
connected a blockchain wallet, unclaimed tokens are managed accord‑
ing to the following protocol:
1. Tokens are held in escrow for up to 1 year from season end
2. Players can claim tokens from any previous season upon connect‑
ing a wallet

3. After the 1‑year period, unclaimed tokens are transferred to the
ecosystem development fund

This ensures players have ample opportunity to claim earned tokens
while preventing permanent token lockup.

5.4.3 Node NFT Conversion At season end, players have the option to
convert valuable nodes to NFTs for permanent ownership. This process:
1. Requires a specific amount of $GBAR to mint the NFT
2. Creates a blockchain record of the node’s properties
3. Allows the node to maintain special status in future seasons

The NFT conversion cost scales with node rarity:
nft_cost(node) = base_cost × rarity_multiplier(node.rarity)
Where: ‑ base_cost = 10 $GBAR ‑ rarity_multiplier = [1, 2, 5, 10, 25, 100]
for rarities 1‑6

6. In‑Game Interaction Protocols
6.1 Player Messaging and Transaction System
6.1.1 Direct Messaging Protocol The MineGoldbar system implements
a secure player‑to‑player messaging protocol to facilitate coordination
and trade:
����������� ������������������� �����������
� Sender ������� Message Routing �������Recipient�
� Client � � & Validation � � Client �
����������� ������������������� �����������

Figure 6.1: Messaging System Architecture
Messages are processed according to the following protocol:
1. Message composition and encryption

22

2. Server‑side validation and filtering
3. Storage in recipient’s message queue
4. Push notification to recipient
5. Retrieval and decryption by recipient

Message types include: ‑ General chat ‑ Node sharing information ‑
Trade proposals ‑ Guild invitations

6.1.2 Transaction Protocol The peer‑to‑peer transaction system
enables secure exchange of resources and nodes between players:
Algorithm 6.1: Secure Transaction Protocol
function process_transaction(sender, recipient, offer, request):

// Validate transaction parameters
if (!validate_resources(sender, offer.resources)) return INSUFFICIENT_RESOURCES
if (!validate_nodes(sender, offer.nodes)) return INVALID_NODES
if (!validate_resources(recipient, request.resources)) return COUNTERPARTY_INSUFFICIENT
if (!validate_nodes(recipient, request.nodes)) return COUNTERPARTY_INVALID_NODES

// Create transaction record with pending status
transaction_id = create_transaction_record(sender, recipient, offer, request)

// Notify recipient of pending transaction
notify_transaction(recipient, transaction_id)

// Wait for recipient confirmation (with timeout)
if (!await_confirmation(transaction_id, CONFIRMATION_TIMEOUT)) {

cancel_transaction(transaction_id)
return TIMEOUT

}

// Execute the exchange atomically
begin_transaction()
try {

// Transfer resources from sender to recipient
transfer_resources(sender, recipient, offer.resources)
transfer_nodes(sender, recipient, offer.nodes)

// Transfer resources from recipient to sender
transfer_resources(recipient, sender, request.resources)
transfer_nodes(recipient, sender, request.nodes)

complete_transaction(transaction_id)
commit_transaction()
return SUCCESS

} catch (error) {
rollback_transaction()
return ERROR

}
}

23

This protocol ensures that transactions are atomic—either completing
fully or not at all—preventing partial transfers that could result from
network failures or other interruptions.

6.2 Guild Structure and Collaborative Mechanisms
6.2.1 Guild Formation and Hierarchy Guilds provide organizational
structure for player collaboration, with a defined hierarchy:
1. Guild Creation:

• Requires 500 Iron Bar initial investment
• Founder becomes automatic Guild Master
• Requires unique name and optional emblem

2. Hierarchy Levels:
• Guild Master (1): Full administrative control
• Officers (up to 5): Membership management and treasury ac‑
cess
• Members (up to 50): Standard participation
• Initiates (unlimited): Restricted participation during trial pe‑
riod

3. Guild Leveling:
guild_xp_requirement(level) = 1000 × (level)^1.5

Guild XP is earned through:
• Collective resource gathering
• Guild mission completion
• Guild competition participation

6.2.2 Guild Resource Pooling Guilds implement a collective resource
system that enables:
1. Guild Treasury:

• Voluntary resource contributions
• Officer‑controlled disbursements
• Automatic contribution options (percentage‑based)

2. Shared Node Benefits:
shared_benefit(node, guild_level) = node_benefit × (0.1 + 0.02 × guild_level)

When a guild member activates a node, all online guild members
receive a percentage of the benefits based on guild level.

3. Collaborative Projects:
• Guild‑wide objectives requiring specific resource contribu‑
tions
• Scaled rewards based on individual contribution percentage
• Special unlocks at project completion

24

6.2.3 Inter‑Guild Relations The guild system facilitates structured in‑
teractions between different player organizations:
1. Alliance System:

• Formal relationships between up to 5 guilds
• Shared chat channels
• Coordination tools for large‑scale activities

2. Guild Competitions:
• Weekly resource gathering competitions
• Special node discovery contests
• Seasonal ranking with exclusive rewards

3. Territory Control:
• Competition for control of virtual “barcode regions”
• Bonus resource generation in controlled territories
• Strategic holding of high‑value regions

6.3 Leaderboard and Competition Algorithms
6.3.1 Leaderboard CalculationMechanisms The systemmaintains var‑
ious leaderboards to incentivize different play styles and achievement
paths:
1. Resource Production Leaderboards:
For each resource type r, player score is calculated as:
score(p, r) = ∑(t_start, t_end) production(p, r, t)
Where:
• production(p, r, t): Amount of resource r produced by player
p at time t
• t_start, t_end: Start and end times of the leaderboard period

2. Node Collection Leaderboards:
Based on the quality and quantity of discovered nodes:
collection_score(p) = ∑(n ∈ nodes(p)) node_value(n)
Where:
• nodes(p): Set of nodes discovered by player p
• node_value(n) =mining_power(n)×rarity_multiplier(n.rarity)

3. Efficiency Leaderboards:
Measures resource production efficiency:
efficiency(p) = total_resource_value(p) / energy_consumed(p)
Where:
• total_resource_value(p): Weighted sum of all resources pro‑
duced
• energy_consumed(p): Total energy units used by player

25

6.3.2 Competition Structure The competition system provides regular
challenges with specific objectives and reward structures:
1. Daily Challenges:

• Rotating objectives (e.g., “Discover 3 Rare+ nodes”)
• Small but consistent rewards
• Streak bonuses for consecutive completion

2. Weekly Competitions:
• Resource‑specific targets
• Progress‑based reward tiers
• Top performer recognition

3. Seasonal Championships:
• Major multi‑category competitions
• Exclusive rewards for top performers
• Permanent recognition for champions

6.3.3 Anti‑Cheating Mechanisms To maintain competitive integrity,
the system implements:
1. Statistical Anomaly Detection:
anomaly_score(p) = ∑(metric ∈metrics) z_score(metric(p))
Where:
• metrics: Set of player activity metrics
• z_score(x): Standard deviations frommean

2. Verified Achievement System:
• Progressive achievement thresholds with increasing verifica‑
tion requirements
• Mandatory screenshot or replay verification for certain
achievements
• Peer review system for high‑value claims

3. Rate Limiting:
• Per‑metric progression rate limits
• Cooldown periods for rapid achievement
• Automatic flagging of statistically improbable progression

These systems work together to ensure fair competition while minimiz‑
ing false positives that would impact legitimate players.

7. Technical Implementation
7.1 TelegramMini App Architecture
7.1.1 Integration Model The MineGoldbar application is implemented
as a Telegram Mini App, leveraging the Telegram ecosystem while pro‑
viding sophisticated gaming functionality:
������������������� ������������������� �������������������
� Telegram Client � � MiniApp WebView � � MineGoldbar �

26

� ������� & Bridge API ������� Application �
������������������� ������������������� �������������������

Figure 7.1: TelegramMini App Integration Architecture
The integration employs the following components:
1. TelegramWebApp Bridge:

• User authentication and identification
• Payment processing via Telegram Stars
• Push notification service
• Deep linking functionality

2. WebView Container:
• HTML5/JavaScript execution environment
• Camera API access for barcode scanning
• Local storage for offline capabilities
• Responsive layout adaptation

3. Backend Integration:
• RESTful API for game state management
• WebSocket connections for real‑time updates
• Content Delivery Network for asset distribution
• Blockchain interface for token operations

7.1.2 Performance Optimization Given the constraints of theMini App
environment, several performance optimizations are implemented:
1. Asset Bundling and Compression:

• JavaScript minification and bundling
• SVG‑based graphics for minimal size
• Texture atlasing for game elements
• Incremental asset loading

2. State Management:
• Client‑side state prediction
• Differential state updates
• Cached resource calculation
• Background processing for non‑critical operations

3. Bandwidth Reduction:
• Binary protocol for state synchronization
• Adaptive quality based on connection speed
• Local caching of static resources
• Compression of dynamic data

These optimizations ensure smooth operation even on low‑end devices
and unstable network connections, maintaining accessibility across di‑
verse user environments.

7.2 Barcode Processing and Hashing Algorithms
7.2.1 Image Processing Pipeline The barcode scanning functionality
employs a sophisticated image processing pipeline:
Algorithm 7.1: Barcode Detection Pipeline

27

function process_camera_frame(image_data):
// Apply image preprocessing
grayscale_image = convert_to_grayscale(image_data)
normalized_image = normalize_brightness(grayscale_image)
filtered_image = apply_adaptive_threshold(normalized_image)

// Detect barcode regions
candidate_regions = detect_barcode_patterns(filtered_image)

// For each candidate region
for (region in candidate_regions) {

// Extract and decode barcode
extracted_pattern = extract_pattern(region, filtered_image)
decoded_result = decode_barcode(extracted_pattern)

// Validate barcode format
if (validate_barcode_format(decoded_result)) {

return {
barcode_data: decoded_result,
barcode_type: detect_barcode_type(decoded_result),
confidence: calculate_confidence(extracted_pattern)

}
}

}

return null // No valid barcode found
}

This pipeline can identify and decode multiple barcode types even in
challenging lighting conditions, non‑optimal angles, and with partial
occlusion.

7.2.2 Data Normalization and Validation Before hashing, barcode data
undergoes normalization and validation:
Algorithm 7.2: Barcode Normalization
function normalize_barcode(barcode_data, barcode_type):

// Apply type-specific normalization
switch (barcode_type) {

case "UPC-A":
// Ensure 12 digits with check digit validation
if (!validate_upc_check_digit(barcode_data)) return null
return pad_to_length(barcode_data, 12, "0")

case "EAN-13":
// Ensure 13 digits with check digit validation
if (!validate_ean_check_digit(barcode_data)) return null
return pad_to_length(barcode_data, 13, "0")

case "CODE-39":

28

// Convert to uppercase and validate character set
if (!validate_code39_characters(barcode_data)) return null
return barcode_data.toUpperCase()

// Additional formats...

default:
// Unknown format, use as-is
return barcode_data

}
}

This normalization ensures consistent input for the hash function, pre‑
venting variations in encoding or representation from generating differ‑
ent nodes for what should be the same barcode.

7.2.3 Secure Hashing Implementation The hash function implementa‑
tion combines security with deterministic output:
Algorithm 7.3: Secure Node Hash Generation
function generate_node_hash(normalized_barcode, season_id):

// Create concatenated input with season identifier
input_data = normalized_barcode + ":" + season_id.toString()

// Apply SHA-256 hashing
hash_buffer = crypto.subtle.digest("SHA-256", encode_utf8(input_data))

// Convert to hexadecimal string
hash_hex = Array.from(new Uint8Array(hash_buffer))

.map(b => b.toString(16).padStart(2, "0"))

.join("")

return hash_hex
}

This function produces a deterministic 256‑bit hash value, providing
sufficient entropy to derive all node properties while ensuring that iden‑
tical barcodes produce identical nodes within the same season.

7.3 Blockchain Integration Mechanisms
7.3.1 Token Bridge Architecture The blockchain integration employs
a secure bridge architecture to connect the game economy with the
blockchain network:
����������������� ����������������� �����������������
� Game State � � Bridge Server � � Blockchain �
� Database ������� & Wallet ������� Network �
����������������� ����������������� �����������������

� � �
� � �

29

� � �
� � �

����������������� ����������������� �����������������
� Game Logic � � Security � � Smart �
� Server ������� Module � � Contracts �
����������������� ����������������� �����������������

Figure 7.2: Blockchain Integration Architecture
This architecture implements several security patterns:
1. Air‑Gapped Transaction Signing:

• Cold wallet storage for major token reserves
• Multi‑signature authorization for token issuance
• Hardware security module integration

2. Batch Processing:
• Aggregation of multiple user transactions
• Periodic settlement to minimize gas costs
• Priority queuing for time‑sensitive operations

3. Reconciliation System:
• Continuous monitoring of on‑chain and off‑chain state
• Automated discrepancy detection
• Manual review process for edge cases

7.3.2 NFT Implementation The node NFT implementation follows
standard token practices with game‑specific extensions:
Smart Contract 7.1: Node NFT Contract (Simplified)
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;

import "@openzeppelin/contracts/token/ERC721/extensions/ERC721Enumerable.sol";
import "@openzeppelin/contracts/access/Ownable.sol";

contract MineGoldbarNode is ERC721Enumerable, Ownable {
// Node properties structure
struct NodeProperties {

uint8 rarity;
uint8 miningPower;
uint8 cooldownTime;
uint32 specialAbilities;
uint16 seasonId;
bytes32 barcodeHash;

}

// Mapping from token ID to node properties
mapping(uint256 => NodeProperties) private _nodeProperties;

// Base URI for metadata
string private _baseTokenURI;

30

constructor() ERC721("MineGoldbar Node", "MGNODE") {
_baseTokenURI = "https://api.minegoldbar.com/node/";

}

function mintNode(
address to,
uint256 tokenId,
NodeProperties calldata properties

) external onlyOwner {
_mint(to, tokenId);
_nodeProperties[tokenId] = properties;

}

function getNodeProperties(uint256 tokenId)
external
view
returns (NodeProperties memory) {
require(_exists(tokenId), "Node does not exist");
return _nodeProperties[tokenId];

}

function _baseURI() internal view override returns (string memory) {
return _baseTokenURI;

}

function setBaseURI(string calldata newBaseURI) external onlyOwner {
_baseTokenURI = newBaseURI;

}
}

This implementation ensures that node properties are permanently
recorded on‑chain while optimizing gas costs by storing only essential
attributes.

7.3.3 Token Contract Implementation The $GBAR token contract im‑
plements standard token functionality with additional features specific
to the MineGoldbar ecosystem:
Smart Contract 7.2: $GBAR Token Contract (Simplified)
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;

import "@openzeppelin/contracts/token/ERC20/extensions/ERC20Burnable.sol";
import "@openzeppelin/contracts/access/AccessControl.sol";

contract GoldBarToken is ERC20Burnable, AccessControl {
bytes32 public constant MINTER_ROLE = keccak256("MINTER_ROLE");
bytes32 public constant BRIDGE_ROLE = keccak256("BRIDGE_ROLE");

uint256 private _cap;

31

constructor(uint256 cap_) ERC20("Gold Bar", "GBAR") {
require(cap_ > 0, "ERC20Capped: cap is 0");
cap = cap;
_setupRole(DEFAULT_ADMIN_ROLE, msg.sender);

}

function mint(address to, uint256 amount) external {
require(hasRole(MINTER_ROLE, msg.sender), "Caller is not a minter");
require(totalSupply() + amount <= _cap, "ERC20Capped: cap exceeded");
_mint(to, amount);

}

function burnFrom(address account, uint256 amount) public override {
if (hasRole(BRIDGE_ROLE, msg.sender)) {

_burn(account, amount);
} else {

super.burnFrom(account, amount);
}

}

function cap() public view returns (uint256) {
return _cap;

}
}

This implementation ensures a capped supply while providing the nec‑
essary roles for secure bridge operation.

7.4 Security and Verification Protocols
7.4.1 Server‑Side Validation All client requests undergo comprehen‑
sive server‑side validation to prevent exploitation:
Algorithm 7.4: Request Validation Pipeline
function validate_client_request(request, user_id):

// Authenticate request
if (!verify_authentication_token(request.auth_token, user_id)) {

return { valid: false, reason: "AUTHENTICATION_FAILED" }
}

// Rate limiting check
if (is_rate_limited(user_id, request.action_type)) {

return { valid: false, reason: "RATE_LIMITED" }
}

// Validate request structure
if (!validate_request_schema(request)) {

return { valid: false, reason: "INVALID_SCHEMA" }
}

32

// Action-specific validation
switch (request.action_type) {

case "SCAN_BARCODE":
return validate_scan_request(request, user_id)

case "ACTIVATE_NODE":
return validate_activation_request(request, user_id)

case "REFINE_RESOURCES":
return validate_refining_request(request, user_id)

// Additional action types...

default:
return { valid: false, reason: "UNKNOWN_ACTION" }

}
}

This validationpipeline ensures that all client actions conform to system
rules and constraints before processing.

7.4.2 Anti‑Cheat Systems To maintain economic integrity, the system
implements multi‑layered anti‑cheat detection:
1. Client Integrity Verification:

• Checksum validation of client code
• Tamper detection for local storage
• Timing analysis for suspicious operations

2. Behavioral Analysis:
anomaly_score = Σ((metric_value - expected_value) / standard_deviation)²

Metrics include:
• Resource acquisition rate
• Node discovery patterns
• Action timing distributions

3. Pattern Recognition:
• Detection of automated play patterns
• Identification of statistically improbable outcomes
• Correlation analysis across user accounts

Detected violations trigger graduated responses based on severity, from
warning messages to account suspension.

7.4.3 Data ProtectionMeasures User data and game state are protected
through comprehensive security measures:
1. Encryption Protocols:

33

• TLS 1.3 for all network communications
• AES‑256 for persistent data storage
• Key rotation schedule for long‑term security

2. Access Control:
• Role‑based access control for all system components
• Principle of least privilege implementation
• Audit logging for sensitive operations

3. Backup and Recovery:
• Continuous incremental backups
• Geographic data redundancy
• Disaster recovery testing schedule

These measures ensure both data security and system availability, pro‑
tecting user assets and game experience.

8. Development Roadmap
8.1 Implementation Phases and Milestones
The MineGoldbar development follows a phased approach with clear
milestones:

8.1.1 Phase 1: Initial Development (Q3 2025)

Milestone Description Deliverables Timeline
Core Engine Fundamental

game mechanics
Barcode
processing, Node
generation
algorithm, Basic
resource system

Month 1‑2

UI Framework Basic user
interface

Navigation
structure, Key
screens, Visual
style guide

Month 2‑3

Server
Infrastructure

Backend systems Database schema,
API endpoints,
Authentication
system

Month 3

8.1.2 Phase 2: Alpha Testing (Q4 2025)

Milestone Description Deliverables Timeline
Closed Alpha Limited user

testing
Functioning core
loop, Telemetry
systems, Feedback
mechanisms

Month 1

34

Milestone Description Deliverables Timeline
Economic
Balancing

Resource system
tuning

Economic
simulation
models, Balance
adjustments,
Scaling
parameters

Month 2

Performance
Optimization

System
efficiency

Load testing
results,
Optimization
implementation,
Scaling plan

Month 3

8.1.3 Phase 3: Beta Launch (Q1 2026)

Milestone Description Deliverables Timeline
Open Beta Expanded user

testing
Season 0
implementation,
Guild system
prototype, Bug
fixes from alpha

Month 1

Community
Features

Social elements Chat system,
Friend mechanics,
Leaderboards

Month 2

Monetization
Testing

Revenue model
validation

VIP subscription,
Initial token
mechanisms,
Analytics
framework

Month 3

8.1.4 Phase 4: Official Launch (Q2 2026)

Milestone Description Deliverables Timeline
Platform
Release

Global
availability

Season 1 launch,
Complete feature
set, Marketing
campaign

Month 1

Blockchain
Integration

Token system
activation

$GBAR
distribution,
Wallet connection,
NFT functionality

Month 2

Ecosystem
Expansion

Partner
integration

API
documentation,
Developer tools,
Partnership
program

Month 3

35

8.2 Feature Expansion Plans
Following the initial launch, MineGoldbar will implement additional
features according to the following roadmap:

8.2.1 Short‑Term Expansion (3 Months Post‑Launch)
1. Enhanced Guild System:

• Guild headquarters customization
• Guild achievement system
• Inter‑guild trading mechanisms

2. Node Upgrade System:
• Node fusion mechanics
• Property enhancement
• Specialization paths

3. Event Framework:
• Time‑limited special events
• Community challenges
• Seasonal themes

8.2.2 Mid‑Term Expansion (6 Months Post‑Launch)
1. Marketplace Enhancement:

• Advanced trading features
• Auction system
• Price history analytics

2. Node Composition System:
• Node blueprints
• Targeted crafting
• Property transfer mechanics

3. Season 2 Expansion:
• New node edition
• Additional resource types
• Enhanced progression paths

8.2.3 Long‑Term Expansion (12+ Months Post‑Launch)
1. $GBAR Ecosystem Expansion:

• Secondary token utilities
• Governance implementation
• External integration options

2. Advanced Guild Content:
• Guild versus guild competitions
• Cooperative raid systems
• Territory control mechanics

3. Partner Integrations:
• Brand collaborations
• Cross‑platform functionality
• External service connections

36

8.3 Ecosystem Growth Strategy
The long‑term growth of the MineGoldbar ecosystem will be supported
through several strategic initiatives:

8.3.1 Telegram Platform Leverage
1. Channel & Group Integration:

• Strategic partnerships with relevant Telegram communities
• Custom bot integration for community engagement
• Specialized group features for MineGoldbar participants

2. Mini App Promotion:
• Featured placement in TelegramMini App directory
• Cross‑promotion with complementary Mini Apps
• Telegram Stars integration for seamless purchases

3. Platform‑Specific Optimizations:
• Telegram‑native notification systems
• Integration with Telegram Passport for verification
• Utilizing upcoming Telegram platform features

8.3.2 Community‑Driven Growth
1. Ambassador Program:

• User‑driven community expansion
• Tiered reward system for referrals
• Community leadership recognition

2. Content Creator Support:
• Creator toolkit and assets
• Revenue sharing opportunities
• Exclusive preview access

3. Community Feedback Loop:
• Regular user surveys
• Feature voting mechanism
• Community council for long‑term planning

8.3.3 Progressive Expansion Strategy
1. Geographic Focus:

• Initial concentration on high‑engagement regions
• Phased localization roadmap
• Regional community managers

2. Demographic Targeting:
• Tailored marketing to primary user segments
• Age‑appropriate engagement strategies
• Acquisition channel optimization

3. Retention Optimization:
• Cohort analysis‑driven feature development
• Churn prediction and prevention
• Long‑term engagement incentives

37

9. Conclusion
MineGoldbar represents a novel integration of physical world inter‑
action, digital asset collection, and economic participation through
its barcode‑based mining system. By transforming everyday objects
into potential sources of digital value, the system creates a unique
exploration‑based gameplay loop that bridges physical and digital
domains.
The system’s key innovations include:
1. Deterministic Barcode‑to‑Node Conversion: Creating consistent,
verifiable digital assets from physical world identifiers through
cryptographic transformation

2. Hierarchical Resource Structure: Establishing a clear progression
path from common to rare resources with mathematically defined
relations

3. Seasonal Economic Model: Implementing controlled economic
cycles with defined state transitions to balance accessibility and
scarcity

4. Community Information Sharing Incentives: Aligning individual
and collective interests through the deterministic node generation
system

5. Blockchain Integration: Providing true ownership of digital assets
while maintaining accessibility through the Telegram platform

Throughout this document, we have presented the mathematical mod‑
els, algorithms, and architectural decisions that form the foundation
of the MineGoldbar system. From the hash‑based node generation
functions to the seasonal token economy, each component has been
designed with both technical precision and user experience in mind.
As the system develops through its planned implementation phases,
we anticipate that the community will discover emergent gameplay
patterns and economic behaviors that will inform future refinements.
The flexibility built into the architecture—from configurable difficulty
adjustments to upgradable smart contracts—provides the adaptability
needed to ensure long‑term sustainability.
MineGoldbar aims to demonstrate that blockchain technology and tok‑
enized economies can enhance rather than dominate gameplay experi‑
ences, creating systems where digital value emerges naturally from en‑
gaging interactions rather than being artificially imposed. By meeting
userswhere they already are—in the physicalworld and on the Telegram
platform—MineGoldbar lowers barriers to participationwhilemaintain‑
ing the benefits of decentralized ownership.

Appendix A: $GBAR Token Details
A.1 Token Specifications

38

Parameter Value
Token Name Gold Bar
Token Symbol GBAR
Decimals 9
Total Supply 1,111,111,111
Token Type TON Jetton
Smart Contract Platform The Open Network (TON)

A.2 Token Distribution Schedule

Allocation
Category

Amount
(GBAR) PercentageUnlock Schedule

Initial Circulation 311,111,111 % At launch
ﾤ Season 0 (Alpha) 100,000,000 %
ﾤ Operation &
Airdrop

211,111,111 % Various

Season 1 (Beta) 200,000,000 % End of Season 0
Season 2 (Official) 300,000,000 % End of Season 1
Future Seasons 300,000,000 % Jan 1, 2026 onwards

A.3 Token Utility
The $GBAR token provides utility within the MineGoldbar ecosystem
through several mechanisms:
1. Season‑End Conversion: In‑game Gold Bar is converted to $GBAR
tokens at the end of each season

2. Node NFT Creation: $GBAR is required to convert valuable nodes
into permanent NFTs

3. Upgrade Refunds: Gold Bar spent on game upgrades is refunded
as $GBAR at season end

4. Governance Rights: Future implementation of governance voting
weighted by token holdings

5. Premium Features: Access to certain exclusive game features
through token staking

6. External Value: Trading capability on compatible exchanges and
DeFi platforms

A.4 Token Security Measures
To ensure token security and prevent exploitation, the following mea‑
sures are implemented:
1. Multi‑Signature Control: Major token operations require multiple
authorized signatures

39

2. Time‑Locked Contracts: Vesting schedules enforced through
smart contract time locks

3. Emission Rate Control: Adjustable difficulty mechanisms to main‑
tain token emission targets

4. Automated Monitoring: Continuous monitoring for suspicious to‑
ken movement patterns

5. Security Audits: Regular third‑party security audits of token con‑
tracts and bridge mechanisms

Appendix B: Mathematical Formulas and Algorithms
B.1 Node Rarity Distribution Function
The probability mass function for node rarity is defined as:
P(R = r) = { 0.5, r = 1 (Common) 0.3, r = 2 (Advanced) 0.15, r = 3 (Rare)
0.04, r = 4 (Epic) 0.009, r = 5 (Legendary) 0.001, r = 6 (Unique) }
This distribution results in the following expected frequencies per 1,000
nodes:

Rarity Level Name Expected Frequency per 1,000
1 Common 500
2 Advanced 300
3 Rare 150
4 Epic 40
5 Legendary 9
6 Unique 1

B.2 Resource Generation Probability Functions
The probability functions for resource generation based on node rarity:
P_copper(r) = { 0.0, r = 1 0.05, r = 2 0.1, r = 3 0.2, r = 4 0.3, r = 5 0.4, r = 6 }
P_silver(r) = { 0.0, r ≤ 2 0.02, r = 3 0.05, r = 4 0.1, r = 5 0.2, r = 6 }
P_gold(r) = { 0.0, r ≤ 3 0.01, r = 4 0.03, r = 5 0.05, r = 6 }

B.3 Refinery Efficiency Calculation
The refining efficiency function E(l) is defined as:
E(l) = min(CR_max ‑ CR_min, floor(log(l) × 0.1 × CR_max))
Where: ‑ l is the refinery level ‑ CR_max is the base conversion rate for
the resource ‑ CR_min is the minimum conversion rate for the resource
This function creates diminishing returns on refinery upgrades, with
specific thresholds:

40

Level
Iron
Efficiency

Copper
Efficiency

Silver
Efficiency

Gold
Efficiency

1 0 (10:1) 0 (15:1) 0 (20:1) 0 (25:1)
10 1 (9:1) 1 (14:1) 1 (19:1) 1 (24:1)
100 2 (8:1) 3 (12:1) 4 (16:1) 5 (20:1)

B.4 Upgrade Cost Function
The upgrade cost function for refinery levels is:
C_upgrade(l) = base_cost × (1.02)^(l‑1) + additional_cost(l)
Where: ‑ base_cost = 100 Iron Bar ‑ additional_cost(l) = { 5 Gold Bar, l = 5
10 Gold Bar, l = 10 l Gold Bar, l ≥ 100 }

Appendix C: Glossary
Barcode: A machine‑readable representation of data, typically in the
form of parallel lines (UPC, EAN) or patterns (QR), used to identify prod‑
ucts or services.
Node: A digital asset in MineGoldbar generated from barcode data, pos‑
sessing properties including mining power, cooldown time, rarity, and
special abilities.
Mining Power: A node property determining the base rate at which re‑
sources are generated, ranging from 1 to 100.
Cooldown Time: The period a node must wait after completing its min‑
ing cycle before it can be activated again, ranging from 1 to 24 hours.
Rarity: A classification of node quality, ranging from Common (level 1)
to Unique (level 6), determining resource generation probabilities.
Ore: The raw, unprocessed form of resources (Iron Ore, Copper Ore, Sil‑
ver Ore, Gold Ore) generated by nodes.
Bar: The refined form of resources (Iron Bar, Copper Bar, Silver Bar,
Gold Bar) created by processing Ore through the refinery.
$GBAR: The blockchain token representation of Gold Bar, convertible at
season end and tradable on external markets.
Season: A defined period of gameplay (typically 3 months) with its own
node edition, culminating in token conversion and partial state reset.
Refinery: The game facility that converts Ore to Bar, upgradable to im‑
prove efficiency.
Energy: A renewable resource consumed when scanning barcodes, lim‑
iting the rate of node discovery.
Activation Slot: A position where a node can be placed to generate re‑
sources, with standard users having 5 slots and VIP users having 8.

41

Guild: A player organization enabling resource sharing, collaborative
projects, and social interaction.
NFT: Non‑Fungible Token, a blockchain record of ownership for a
unique digital asset, used to represent nodes at season end.
VIP: A premium subscription status providing benefits including faster
energy regeneration, additional activation slots, and special rewards.

References
[1] Nakamoto, S. (2008). “Bitcoin: A Peer‑to‑Peer Electronic Cash Sys‑
tem.” https://bitcoin.org/bitcoin.pdf
[2] Durov, N. (2019). “Telegram Open Network.” https://ton.org/ton.pdf
[3] Wood, G. (2014). “Ethereum: A Secure Decentralised Generalised
Transaction Ledger.” Ethereum Project Yellow Paper.
[4] Brown, R.G. et al. (2016). “Corda: An Introduction.” https://docs.corda.net/_static/corda‑
introductory‑whitepaper.pdf
[5] EthereumFoundation (2017). “ShardingFAQ.”https://github.com/ethereum/wiki/wiki/Sharding‑
FAQ
[6] Gudgeon, L., Moreno‑Sanchez, P., Roos, S., McCorry, P., & Gervais, A.
(2020). “SoK: Layer‑Two Blockchain Protocols.” Financial Cryptography
and Data Security.
[7] Brown‑Cohen, J., Narayanan, A., Psomas, A., & Weinberg, S. M.
(2019). “Formal Barriers to Longest‑Chain Proof‑of‑Stake Protocols.”
ACM Conference on Economics and Computation.
[8] Buterin, V., &Griffith, V. (2017). “Casper the Friendly FinalityGadget.”
https://arxiv.org/abs/1710.09437
[9] Tomescu, A., Abraham, I., Beaver, D., Benhaim, B., Campanelli, S.,
Daian, P., ⋯ & Yunqi, L. (2020). “UTXOs are Good Enough.” Stanford
Blockchain Conference.
[10] Ethereum Foundation (2018). “Ethereum 2.0 Specifications.”
https://github.com/ethereum/eth2.0‑specs

42

	A Protocol for Converting Real-World Barcodes into Digital Mining Nodes
	Abstract
	Table of Contents
	1. Introduction
	1.1 Background of Barcode-Based Mining Ecosystems
	1.2 Goals and Vision of MineGoldbar
	1.3 Document Structure

	2. MineGoldbar Architecture
	2.1 System Overview
	2.2 Barcode-Node Conversion Mechanism
	2.3 Resource System Hierarchy
	2.4 Node Interactions
	2.5 Seasonal Structure and State Transitions

	3. Mining Mechanism
	3.1 Barcode Scanning Protocol
	3.2 Node Property Calculation Algorithms
	3.3 Resource Generation Mechanisms
	3.4 Energy System Mathematical Model

	4. Refining Process
	4.1 Ore-to-Bar Conversion Functions
	4.2 Refining Efficiency Calculations
	4.3 Upgrade Paths and Cost Analysis

	5. Token Economy
	5.1 Technical Specifications of $GBAR Token
	5.2 Issuance and Distribution Mechanisms
	5.3 Token Value Stabilization Algorithms
	5.4 Inter-Season Token Conversion Protocol

	6. In-Game Interaction Protocols
	6.1 Player Messaging and Transaction System
	6.2 Guild Structure and Collaborative Mechanisms
	6.3 Leaderboard and Competition Algorithms

	7. Technical Implementation
	7.1 Telegram Mini App Architecture
	7.2 Barcode Processing and Hashing Algorithms
	7.3 Blockchain Integration Mechanisms
	7.4 Security and Verification Protocols

	8. Development Roadmap
	8.1 Implementation Phases and Milestones
	8.2 Feature Expansion Plans
	8.3 Ecosystem Growth Strategy

	9. Conclusion
	Appendix A: $GBAR Token Details
	A.1 Token Specifications
	A.2 Token Distribution Schedule
	A.3 Token Utility
	A.4 Token Security Measures

	Appendix B: Mathematical Formulas and Algorithms
	B.1 Node Rarity Distribution Function
	B.2 Resource Generation Probability Functions
	B.3 Refinery Efficiency Calculation
	B.4 Upgrade Cost Function

	Appendix C: Glossary
	References

